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Abstract. This paper provides an analysis of deformations of a carbon-fiber-reinforced layered cylindrical yacht
mast. The mast is subjected to an axial compressive load and analytical expressions for the resulting stress fields
are obtained. The analysis is used to predict the failure mode for a particular class of yacht masts.
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1. Introduction

This study is concerned with the design of carbon-fiber-reinforced cylinders for use in racing-
yacht masts. The mast structures considered involve three cylindrical layers of the same
fiber-reinforced composite with the fibers in adjacent layers having different orientations.
An analysis of the stress fields in masts of this type is presented and the results used to
determine the configuration of a three-layered fiber-reinforced mast structure which optimises
the compressive load-carrying capacity of the mast.

The motivation for this study arose from a problem considered at the 1995 Australian
Mathematics-In-Industry Study Group (MISG) [1]. The problem involved the manufacture of
carbon-fiber-reinforced yacht masts for ‘Moth’ class yachts. The principal feature of these
masts is that, with the fibers oriented along the axis, it is possible to produce a very light
mast (typically of radius 23 mm and thickness 1 mm) which is capable of sustaining the
considerable compressive loads imposed on it by the rigging wires which keep the mast in
a straight vertical position. However, when masts constructed in this way are subjected to
these axial compressive loads they are prone to fail due to the fact that the fibers are inclined
to buckle out of the resin which binds them together in the composite material. The ability of
the mast to sustain the compressive loads is enhanced by including in the mast structure very
thin inner and outer fiber-reinforced layers of the same carbon-reinforced material but with
the fibers aligned circumferentially rather than along the mast axis. These layers add to the
weight of the mast and, since their principal purpose is to keep the fibers in the central layer
in line, it is desirable to keep their width as small as possible. Thus, the specific problem is to
determine, for a specified mast thickness, the best thickness of the inner and outer layers in
order to optimise the compressive load carrying capacity of the ‘Moth’ type yacht mast.

At the 1995 MISG a preliminary analytical stress analysis of part of the problem was
carried out by means of thin shell theory. Also, a more comprehensive numerical examination
of the problem was carried out with the finite-element package MSC/NASTRAN. On the
basis of these investigations some conclusions were drawn regarding the likely failure mode
for ‘Moth’ type yacht masts.
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Figure 1. The geometry of the problem.

This paper is concerned with providing a more complete analytical analysis of the problem
than was obtained at the MISG meeting and duly reported in the proceedings [1]. Specifically,
an analytical examination of the stress field is presented without the thin-shell assumption and
also a more complete thin-shell analysis is provided. In addition, an analytical consideration
of the buckling of the mast structure is presented. These analytical results enable some conclu-
sions to be drawn regarding the desirable width of the inner and outer layers for ‘Moth’-type
yacht masts. These conclusions obtained from the analytical examination of the problem are
broadly in agreement with those obtained from the finite-element investigation reported in the
MISG proceedings [1]

2. Statement of the problem

The problem described in the introduction may be specified more precisely as follows.
Referred to cylindrical polar coordinatesr, θ, z consider a cylinder consisting of three

layers with the axis of the cylinder along thez-axis (Figure 1). The middle layer of the cylinder
lying betweenr = b andr = c (0 < b < c) consists of a fibre-reinforced composite with
the fibres parallel to the axis of the cylinder. The inner and the outer layers lying between
r = a andr = b (0 < a < b) and betweenr = c andr = d (d > c) consist of the same
fibre-reinforced composite with the fibres running in circles around the axis of the cylinder.
The total thickness of the three layers is small relative to the mast radius.

A compressive load is applied to the cylinder in a direction parallel to thez-axis. The
entire axial load is taken up by the middle layer (so the axial loads in the inner and outer
layers are zero). It is required to find the stress and displacement throughout the cylinder and
to determine the failure loads for compressive failure and also for failure due to local buckling.

For the purpose of this analysis, each layer is modelled by a homogeneous anisotropic
elastic material with appropriate elastic constants used to reflect accurately the properties of
the fibre-reinforced composite.
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3. Notation and material constants

With minor modifications the notation used will follow that employed in the 1995 MISG
proceedings [1].
r, θ, z

a

b

c

d

l

m

n

El
Et

=
=
=

=

=
=
=
=
=
=

cylindrical polar coordinates
radius of inner surface
radius of interface between inner and
middle layers
radius of interface between middle and
outer layers
radius of outer surface
width of inner layer
width of middle layer
width of outer layer
Young’s modulus in the fiber direction
Young’s modulus transverse to the fibres

νlt

νt l

νt t

σzz

σrr
σθθ
εrr
εθθ
εzz

=

=

=

=

=
=
=
=
=

Poisson’s ratio coupling strain in the fiber
direction to strain normal to the fiber
Poisson’s ratio coupling strain normal to
the fiber to strain in the fiber direction
Poisson’s ratio coupling strain in two
orthogonal directions normal to the fiber
normal stress in plane perpendicular to
mast axis
radial stress
circumferential stress
strain in radial direction
circumferential strain
strain in longitudinal direction

superscript(o,m,i) = refers to the outer, middle or inner layers

The values of the material constants which will be used throughout the paper are those em-
ployed in the 1995 MISG [1] for the carbon-fiber-reinforced material used for the manufacture
of ‘Moth’ type yacht masts. The values are

Et
El

σ
tensile strength
l

σ
tensile strength
t

=
=
=
=

8 GigaPascals
125 GigaPascals
2090 MegaPascals
64 MegaPascals

σ
compressive strength
l

σ
compressive strength
t
νlt
νt l

=
=
≈
≈

1717 MegaPascals
210 MegaPascals
0·35
0·02.

4. Classical linear elastic analysis

In this section the classical linear elastic theory for an anisotropic body is applied to analyse
the stress field in the three-layer tubular mast structure of Section 2.

Under the assumption that the stresses are independent ofθ andz and with zero tractions
on the boundariesr = a andr = d it may readily be shown that the only nonzero stresses
areσrr, σθθ andσzz. These stresses must satisfy the equilibrium equation (see Malvern [2, pp.
667–669])

∂σrr

∂r
+ σrr − σθθ

r
= 0. (1)

This equilibrium equation will be automatically satisfied if the stresses take the form

σrr = 1

r

∂φ

∂r
, (2)

σθθ = ∂2φ

∂r2
, (3)
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whereφ = φ(r) is a twice differentiable function ofr. The relevant compatibility equation is
(see Malvern [2])

∂2εθθ

∂r2
− 1

r

∂εrr

∂r
+ 2

r

∂εθθ

∂r
= 0. (4)

At this point it is convenient to consider the middle layer and the inner and outer layers
separately.

4.1. MIDDLE LAYER

For this layer the stress-strain relations are of the form (see Saada [3, Chapters 8 and 9],
Lekhnitskii [5, p. 66])

εrr = 1

Et
σrr − νtt

Et
σθθ − νlt

El
σzz, (5)

εθθ = −νtt
Et
σrr + 1

Et
σθθ − νlt

El
σzz, (6)

εzz = −νtl
Et
σrr − νtl

Et
σθθ + 1

El
σzz, (7)

where the symmetry properties of the stiffness matrix require that

νtl

Et
= νlt

El
. (8)

Use of (2), (3), (5) and (6) in Equation (4) yields

d4φ

dr4
+ 2

r

d3φ

dr3
− 1

r2

d2φ

dr2
+ 1

r3

dφ

dr
= 0. (9)

The general solution of this differential equation may be written in the form

φ(r) = Ar2 log(r)+ B log(r)+ Cr2+D, (10)

whereA,B,C andD are arbitrary constants.

4.2. INNER AND OUTER LAYERS

For these layers the stress-strain relations are of the form

εrr = 1

Et
σrr − νlt

El
σθθ − νtt

Et
σzz, (11)

εθθ = −νtl
Et
σrr + 1

El
σθθ − νtl

Et
σzz, (12)

εzz = −νtt
Et
− νlt
El
σθθ + 1

Et
σzz. (13)
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Use of (2), (3), (11) and (12) in Equation (4) yields

1

El

d4φ

dr4
+ 2

Elr

d3φ

dr3
− 1

Etr
2

d2φ

dr2
+ 1

Etr
3

dφ

dr
= 0. (14)

The general solution of differential equation (14) may be written in the form

φ(r) = Ar1−β + Br1+β + Cr2+D, (15)

whereβ = √El/Et . Use of (15) and (10) in the expressions for the stress (2) and (3) gives

σ (i)rr = A(i)(1− β)r−1−β + B(i)(1+ β)r−1+β + 2C(i), (16)

σ
(i)
θθ = −A(i)(1− β)βr−1−β + B(i)(1+ β)βr−1+β + 2C(i), (17)

σ (m)rr = A(m)(2 log(r)+ 1)+ B
(m)

r2
+ 2C(m), (18)

σ
(m)
θθ = A(m)(2 log(r)+ 3)− B

(m)

r2
+ 2C(m), (19)

σ (o)rr = A(o)(1− β)r−1−β + B(o)(1+ β)r−1+β + 2C(o), (20)

σ
(o)
θθ =−A(o)(1− β)βr−1−β + B(o)(1+ β)βr−1+β + 2C(o), (21)

where the(i), (m) and(o) superscripts denote the inner, middle and outer layers, respectively.
The radial displacement in the layers can be derived by the use of the equations (see Malvern
[2])

∂u(i)r

∂r
= ε(i)rr =

1

Et
σ (i)rr −

νlt

El
σ
(i)
θθ −

νtt

Et
σ (i)zz ,

∂u(m)r

∂r
= ε(m)rr =

1

Et
σ (m)rr −

νtt

Et
σ
(m)
θθ −

νlt

El
σ (m)zz ,

∂u(o)r

∂r
= ε(o)rr =

1

Et
σ (o)rr −

νlt

El
σ
(o)
θθ −

νtt

Et
σ (o)zz .

Substituting (16)–(21) in these equations and integrating, we have

u(i)r =
1

β2Et
[A(i)(β − 1)r−β(β + νlt)+ B(i)(β + 1)rβ(β − νlt )

+2C(i)β(β − νlt )r − νttσ (i)zz rβ2],

u(m)r = r

Et
[2A(m)(1− νtt )(log(r)− 1)− B

(m)

r2
(1+ νtt )

+A(m)(1− 3νtt )+ 2C(m)(1− νtt )] − νlt
El
σ (m)zz r,

u(o)r =
1

β2Et
[A(o)(β − 1)r−β(β + νlt )+ B(o)(β + 1)rβ(β − νlt )

+2C(o)β(β − νlt )r − νttσ (o)zz rβ
2].
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The displacementuθ may be obtained from the above equations and the relation∂uθ/∂θ =
−ur + rεθθ . To ensure the continuity of the displacementuθ it is necessary to set

C(i) = C(o) = A(m) = 0. (22)

Thus the final expressions for the radial displacement and stress in each layer are

u(i)r =
1

Et

[
A(i)

(
1− 1

β

)(
1+ νlt

β

)
r−β + B(i)

(
1+ 1

β

)
rβ
(

1− νlt
β

)]
, (23)

σ (i)rr = A(i)(1− β)r−1−β + B(i)(1+ β)r−1+β, (24)

σ
(i)
θθ =

β

r
[−A(i)(1− β)r−β + B(i)(1+ β)rβ ], (25)

u(m)r =
1

Et

[
−(1+ νtt )B

(m)

r
+ 2(1− νtt)C(m)r

]
− νlt
El
σ (m)zz r, (26)

σ (m)rr =
B(m)

r2
+ 2C(m), (27)

σ
(m)
θθ = −

B(m)

r2
+ 2C(m), (28)

u(o)r =
1

Et

[
A(o)

(
1− 1

β

)(
1+ νlt

β

)
r−β + B(o)

(
1+ 1

β

)
rβ
(

1− νlt
β

)]
. (29)

σ (o)rr = A(o)(1− β)r−1−β + B(o)(1+ β)r−1+β , (30)

σ
(o)
θθ =

β

r
[−A(o)(1− β)r−β + B(o)(1+ β)rβ ]. (31)

5. Solution of the problem

The boundary and interface conditions onr = a, b, c, d are

σ (i)rr = 0 on r = a (32)

u(i)r = u(m)r , σ (i)rr = σ (m)rr on r = b, (33)

u(m)r = u(o)r , σ (m)rr = σ (o)rr on r = c, (34)

σ (o)rr = 0 on r = d. (35)

Use of (28) and (25) together with the boundary conditions (35) yields

A(i)(1− β)+ B(i)(1+ β)a2β = 0,
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A(i)(1− β)b−1−β + B(i)(1+ β)b−1+β = B(m)

b2
+ 2C(m)

A(i)
(

1− 1

β

)
b−β

(
1+ νlt

β

)
+ B(i)

(
1+ 1

β

)
bβ
(

1− νlt
β

)

+(1+ νtt )B
(m)

b
− 2(1− νtt)C(m)b + νltEt

El
σ (m)zz b = 0,

A(o)(1− β)c−1−β + B(o)(1+ β)c−1+β = B(m)

c2
+ 2C(m),

A(o)
(

1− 1

β

)
c−β

(
1+ νlt

β

)
+ B(o)

(
1+ 1

β

)(
1− νlt

β

)
cβ

+(1+ νtt )B
(m)

c
− 2(1− νtt)C(m)c + νltEt

El
σ (m)zz c = 0,

A(o)(1− β)d−1−β + B(o)(1+ β)d−1+β = 0.

Solving this set of six linear equations and substituting the result in (23) and (31) allows
us to calculate the stress and radial displacements of any point on the mast. Some particular
numerical results are given in Table 1. The elastic constants used in these calculations were
those of the carbon-fiber-reinforced material used to construct ‘Moth’ type masts given in
Section 3. Although the stressσθθ does vary throughout each layer, the variation is of no more
than two per cent. For the purposes of presenting numerical results in Table 1 a single number
corresponding to the average of the stressesσθθ on each layer’s inner and outer boundaries
has been used. Also, in the table the notationσ (i−m)rr is used to denote the stressσrr at the
interfacer = a + l between the inner and middle layer andσ (m−o)rr to denote the stressσrr at
the interfacer = a + l +m between the middle and outer layer.

6. Thin-shell approximation

The analysis and results of the previous section suggest that, since the variation in the cir-
cumferential stresses through the layers is small, a simpler analysis involving a thin-shell
approximation may be instructive. The basis of this approximate technique is to assume that
each of the layers of material are very thin and so the stressσθθ is approximately constant
throughout the layer.

The radial stresses at each of the interfaces may be related to the circumferential stresses in
the inner and outer layers by consideration of a small wedge subtended by an infinitesimally
small angle dθ as shown in Figure 2. Summation of the force components in the horizontal
direction gives

σ (m−o)rr (a + l +m)dθ + 2σ (o)θθ n sin

(
dθ

2

)
= 0,

and since the angle dθ is infinitesimal sin(dθ/2) ≈ dθ/2. Use of the fact that the layers are
thin compared with the radiusa yields

σ (m−o)rr ≈ −n
a
σ
(o)
θθ (36)
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Table 1. Numerical results for the stresses in each layer due to a compressive force of 10 kN.

Dimensions (mm) Stresses (MPa)

a l m n σ
(i)
θθ σ

(m)
θθ σ

(o)
θθ σ

(i−m)
rr σ

(m−o)
rr σ

(m)
zz

23 0·25 0·5 0·25 2·25 −2·884 3·45 0·0245 −0·0375 −136

50 0·25 0·5 0·25 1·20 −1·334 1·46 0·0060 −0·0073 −63·0
100 0·25 0·5 0·25 0·63 −0·669 0·70 0·0016 −0·0017 −31·7
23 0·10 0·8 0·10 5·52 −1·510 6·56 0·0239 −0·0274 −84·7
50 0·10 0·8 0·10 2·70 −0·703 2·92 0·0054 −0·0057 −39.4

100 0·10 0·8 0·10 1·38 −0·353 1·44 0·0014 −0·0014 −19·8
23 0·02 0·97 0·01 16·3 −0·518 16·7 0·0142 −0·0073 −69·8
50 0·02 0·97 0·01 7·62 −0·239 7·71 0·0030 −0·0015 −32·5

100 0·02 0·97 0·01 3·84 −0·120 3·86 0.0008 −0·0004 −16·3

(o)

(o)

r

(m-o)

r
d

r

n

= 0
r r

Figure 2. The forces acting on a single layer of a thin wedge.

and similarly for the inner layer

σ (i−m)rr ≈ l

a
σ
(i)
θθ . (37)

Now consider a small wedge containing all three layers as shown in Figure 3 where the
boundary conditions require that the radial stressesσrr are zero on the inner and outer layers.
Application of the equations of equilibrium to this infinitesimal wedge produces

σ
(i)
θθ l + σ (m)θθ m+ σ (o)θθ n = 0. (38)

Since the material and the boundary conditions are both independent ofθ , the deformed
mast will maintain its circular cross-section. As a result, when the circumference increases
in length by a certain percentage, the radius of the circular cross-section will increase by the



Deformations of carbon-fiber-reinforced yacht masts19

(i)

(m)

(o)

(i)

(o)

(m)

l m nd

Figure 3. The forces acting on a thin wedge.

same percentage. Hence the strainεθθ must be continuous across each of the interfaces giving

ε
(i)
θθ = −νtl

σ (i)zz

Et
+ σ

(i)
θθ

El
− νtl σ

(i−m)
rr

Et

= −νlt σ
(m)
zz

El
+ σ

(m)
θθ

Et
− νtt σ

(i−m)
rr

Et

= ε
(m)
θθ . (39)

Since the inner and outer layers carry no axial stress (soσ (i)zz = 0), use of Equations (8) and
(37) in (39) yields

σ
(m)
θθ

Et
−
[

1

El
+ l

a

(
νtt

Et
− νlt
El

)]
σ
(i)
θθ = νlt

σ (m)zz

El
. (40)

In a similar way consideration of the strainεθθ at the interface between the middle and outer
layers yields

σ
(m)
θθ

Et
−
[

1

El
− n
a

(
νtt

Et
− νlt
El

)]
σ
(o)
θθ = νlt

σ (m)zz

El
. (41)

If the thickness of the layersl andn are very much smaller than the radius of the masta,
then terms of orderl/a andn/a may be ignored. Equations (40) and (41) then immediately
provide

σ
(i)
θθ = σ (o)θθ (42)

and then (38) and (40) (or (41)) yield, in turn,

σ
(m)
θθ = −

l + n
m

σ
(i)
θθ , (43)
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σ
(i)
θθ = σ (o)θθ = −

νlt

[1+ l+n
m

El
Et
]σ

(m)
zz . (44)

The solution to the three linear Equations (38), (40) and (41) provide a simple implicit solution
for the stressesσ (i)θθ , σ

(m)
θθ andσ (o)θθ . Then Equations (36) and (37) may be used for calculation

of the interfacial radial stresses and, hence, all of the stresses in each layer of the material for
a given compressive load may be found. In the case when the layersl andm are very small
compared with the radiusa the explicit formulas (43) and (44) may be used to determine the
circumferential stresses in place of Equations (38), (40) and (41). In particular, whenl andn
are small compared with the radiusa, the formula (44) immediately shows that

|σ (i)θθ | = |σ (o)θθ |
< νlt |σ (m)zz |
= 0·35|σ(m)zz |.

Some particular numerical results obtained from these equations are given in Table 2,
where use has been made of the elastic constants for the ‘Moth’ mast given in Section 3.
Comparison of Tables 1 and 2 indicates that the results are in close agreement in the cases
when the layer widths are much smaller than the radiusa of the mast.

It is immediately clear for all the cases considered that the inner and outer layers will not
fail in circumferential tension before the inner layer fails in longitudinal compression. Simil-
arly, the middle layer will not fail in circumferential compression before it fails in longitudinal
compression. For the case of very thin inner and outer layers (l, n ≈ 0) Equations (44) and
(45), taken together with the tensile and compressive strengths given in Section 3, indicate
that in the circumferential direction the inner and outer layers are at approximately 29% of
their tensile strength at the point when the inner layer fails in longitudinal compression.

Table 2. Numerical results for the stresses in each layer due to a compressive force of 10 kN.

Dimensions (mm) Stresses (MPa)

a l m n σ
(i)
θθ σ

(m)
θθ σ

(o)
θθ σ

(i−m)
rr σ

(m−o)
rr σ

(m)
zz

23 0·25 0·5 0·25 2·69 −2·852 3·01 0·0293 −0·0327 −136

50 0·25 0·5 0·25 1·29 −1·327 1·36 0·0065 −0·0068 −63·0
100 0·25 0·5 0·25 0·66 −0·667 0·68 0·0016 −0·0017 −31·7
23 0·10 0·8 0·10 5·91 −1·510 6·17 0·0257 −0·0268 −84·7
50 0·10 0·8 0·10 2·78 −0·703 2·84 0·0056 −0·0057 −39·4

100 0·10 0·8 0·10 1·41 −0·353 1·42 0·0014 −0·0014 −19·8
23 0·02 0·97 0·01 16·4 −0·509 16·5 0·0143 −0·0072 −69·8
50 0·02 0·97 0·01 7·65 −0·237 7·68 0·0031 −0·0015 −32·5

100 0·02 0·97 0·01 3·85 −0·119 3·86 0·008 −0·004 −16·3

The results indicate that, if ‘Moth’ type masts which are typically of radius 23 mm and
thickness 1 mm were to fail due to compressive failure, the optimal design would be to have no
inner or outer supporting layers at all. Practical tests indicate, however, that the load-bearing
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capacity of the masts is improved by including thin inner and outer layers and this suggests
that the main mode of failure of the ‘Moth’ mast is due to buckling.

7. Failure due to buckling

In this section the failure of the mast structure due to Euler and local buckling is considered

7.1. EULER BUCKLING

The critical load for Euler buckling of a column, securely fixed at one end is expressed in
Timoshenko and Gere [5, p. 48] as

Fcr = π2EI

4l2
, (45)

wherel is the length of the column,E is Young’s modulus along the length of the column and
I is the moment of inertia about the bending axis. An equivalent flexural rigidityEI may be
easily calculated for the three-layered cylinder to produce a critical load of

Fcr = π3(El(c
4− b4)+ Et(d4− c4+ b4− a4))

8l2
. (46)

For the case of the ‘Moth’ mast (whereEl > Et ) for a given inner radiusa and outer radiusd
this expression reaches a maximum when the inner and outer layers are both reduced to zero
thickness (that is:b = a andc = d). In practice, however, the ‘Moth’ mast would be con-
strained from buckling in this fashion by the rigging holding it straight and vertical. However,
for other cylindrical columns with different properties and uses, this form of buckling may
play an important role in determining its optimal dimensions.

7.2. LOCAL BUCKLING

Local buckling occurs when the walls of the cylindrical shell collapse without any bending
about the axis of symmetry. The procedure described here calculates the failure load for the
symmetrical buckling of the central load-bearing layer, taking into account the restorative
forces of the inner and outer supportive layers. It does not take into account possible asym-
metrical perturbations in either the applied compressive load, or the elastic properties of the
materials. It also does not consider the possibility of asymmetric buckling. However, for a
single-layered cylindrical shell, Timoshenko and Gere [5, p. 465] make the observation that
the asymmetric buckling load is not greatly different from the symmetrical buckling load
provided the cylinder is long enough. For this reason it is expected that the present analysis
will provide a useful and accurate approximation to the exact buckling load.

The method to be used is similar to that outlined in Timoshenko and Gere [5, pp. 443–
445]. Consider a thin strip taken out of the centre section, as shown in Figure 4. Each of these
strips may be considered to act as single Euler columns with the local buckling of the cylinder
corresponding to the Euler buckling of each strip about theXX-axis. The bending of each of
these infinitesimal strips is governed by (see Timoshenko and Gere [5, p. 11])

EI
d4y

dx4
+ P d2y

dx2
= q(x), (47)
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X X

r.d0

d0

m

Figure 4. A thin strip taken from the central layer.

whereE is Young’s modulus in the longitudinal direction,I is the moment of inertia about
the axis of bending,y is the horizontal displacement of the strip (which is dependent onx,
the distance from the end of the strip),P is the axial force acting on the strip, andq(x) is the
restoring pressure.

If it is assumed that there is a forceF acting uniformly over the entire middle layer, the
force on the end of the strip will be

P = F dθ/(2π). (48)

To produce an expression for the restoring force, it is assumed that the buckling is symmetric
(soy(x) is exactly the same for all of the strips).

At a distancex from the end of the mast, the central layer will buckle a distancey(x). If
the same assumptions are used as for the thin-shell approximation in Section 6, the stressσ

(o)
θθ

in the outer layer is constant and according to Equation (36) is related to the interfacial stress
σ (m−o)rr at the interfacer = a + l +m by

σ
(o)
θθ ≈ −

a

n
σ (m−o)rr . (49)

Since the layers are thin compared with the radiusa, it follows that use of Equation (49) in
Equation (12) provides

σ (m−o)rr ≈ −n
a
Elε

(o)
θθ = −El

ny

a2
. (50)

If similar arguments are used for the other two layers (and if the argument that the middle
layer is not compressed significantly is used, so that all three layers are displaced by the same
y(x)), the following total restoring pressure (force per unit length) distribution results

q(x) = −
[
(l + n)y
a2

El + my
a2
Et

]
a dθ. (51)
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Since the expression for the restoring force depends onl + n, but notl or n separately, the
critical load for local buckling will depend on the total percentage of hoop reinforcement
rather than the size of each of the individual hoop layers.

The relevant moment of inertiaI for the column depicted in Figure 4 is given by

I = a dθm3

12

[
1+ 2l +m

2a

]
. (52)

Substitution of (48), (51), (52) in (47) now gives

El
a dθm3

12

[
1+ 2l +m

2a

]
d4y

dx4
+ F dθ

2π

d2y

dx2
+
(
l + n
a

El + m
a
Et

)
y dθ = 0. (53)

Hence

am3

12

[
1+ 2l +m

2a

]
d4y

dx4
+ F

2πEl

d2y

dx2
+
(
l + n
a
+ Etm
Ela

)
y = 0. (54)

This is a fourth-order, ordinary differential equation with constant coefficients which can
be solved exactly. The solution will be of the formy(x) = A sin(w1x) + B cos(w1x) +
C sin(w2x) + D cos(w2x) whereA, B, C andD are arbitrary constants which may be de-
termined by boundary conditions at the ends of the mast. Imposing these boundary conditions
provides a set of linear algebraic equations for the four constantsA, B, C andD. The determ-
inant of the coefficients in these linear algebraic equations becomes zero whenw1 = w2 and
this equation provides the criterion for buckling. Now from (54) the condition for buckling
w1 = w2 leads to the following equation for the buckling loadFcr[

Fcr

2πEl

]2

− am
3

3

[
1+ 2l +m

2a

][
El(l + n)+ Etm

Ela

]
= 0, (55)

Since the layers are thin compared with the radiusa, only leading terms involving layer
thickness over the mast radius need to be retained, so that (55) reduces to[

Fcr

2πEl

]2

− am
3

3

[
El(l + n)+ Etm

Ela

]
= 0, (56)

which is independent of the radius of the mast. Rearranging this formula gives an explicit
expression for the critical load

Fcr = 2√
3
πEl

√
m3

(
(l + n)+ Et

El
m

)
. (57)

The maximum buckling load will occur when

∂Fcr

∂m
=
[

2

√
m3

(
(l + n)+ Et

El
m

)]−1
∂

∂m

[
m3

(
t +

(
Et

El
− 1

)
m

)]
= 0,
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Figure 5. Comparison of critical loads.

wheret = l +m+ n is the mast thickness. Therefore, for a mast of constant thicknesst , the
maximum buckling load will occur when

3t + 4m

(
Et

El
− 1

)
= 0. (58)

For the specific case of the ‘Moth’-type yacht mast, substituting the relevant material
constantsEt andEl from Section 3 in this expression givesm = 0·8013t. Since the mast
thickness is given byt = l+m+ n, it immediately follows that the thickness of the inner and
outer layersl + n as a fraction of the total thickness is given by

l + n
t
= 1− m

t
= 0·1987. (59)

A quick calculation of the critical force indicates that the failure load is in fact less for local
buckling than for compressive failure, and hence from (59) the optimum hoop reinforcement
is approximately 19·87% of the total thickness of the mast.

In Figure 5 the critical load for local bucklingFcr obtained from Equation (57) is plotted
against the percentage of hoop reinforcement 100(l+n)/t for a typical ‘Moth’ mast for which
the total thicknesst = l + m + n = 1 mm and the radiusa = 23 mm. Also plotted on the
same graph, with reference to the analysis of Section 4, is the compressive failure load for the
same mast. It is apparent for all of the percentages of hoop reinforcement considered that the
failure load due to local buckling is less than the compressive failure load. Thus, this analysis
indicates that the failure mode for such masts is local buckling and to maximise the critical
buckling load 19·87% of the total thickness should be hoop reinforcement.

8. Summary and conclusions

The analysis of this paper involved aspects of the deformation of a three-layered carbon-
fiber-reinforced yacht mast such as would be found in ‘Moth’-type yachts. In the analysis
both failure under compression and local buckling have been examined and as a result, some
design specification for masts of this type have been obtained. Specifically, for the type of
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mast structure considered it has been shown that, to maximise the load at which failure occurs,
roughly 20% of the mast thickness should consist of carbon-fiber-reinforced inner and outer
layers with the fibers in these layers wound around the mast in planes normal to the mast axis.
The results in Figure 5 indicate that the introduction of these layers into the mast structure
increases the critical buckling load by approximately 30%.

No account has been taken of a number of factors which may also impinge upon the
strength of the mast. For example, poor fabrication of the fiber-reinforced material, such that
all the fibers in the central layer of the material are not all straight, may be an important factor
in the strength of the mast (see Fleck [6]). Also, bending of the mast has not been considered
in determining the critical load. The rigging supports would normally keep the mast straight
and remove any bending effect, but in the event of any substantial bending occurring this
could significantly affect the strength of the mast. Although these and other factors may be
important in isolated cases, practical experience with particular ‘Moth’ masts indicates that,
in general, this paper provides the relevant analysis of the major effects leading to the failure
of masts of this type.
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